EconPapers    
Economics at your fingertips  
 

Join the Shortest Queue with Many Servers. The Heavy-Traffic Asymptotics

Patrick Eschenfeldt () and David Gamarnik ()
Additional contact information
Patrick Eschenfeldt: Massachusetts Institute of Technology Operations Research Center, Cambridge, Massachusetts, 02139
David Gamarnik: Massachusetts Institute of Technology Sloan School of Management and Operations Research Center, Cambridge, Massachusetts 02139

Mathematics of Operations Research, 2018, vol. 43, issue 3, 867-886

Abstract: We consider queueing systems with n parallel queues under a Join the Shortest Queue (JSQ) policy in the Halfin-Whitt heavy-traffic regime. We use the martingale method to prove that a scaled process counting the number of idle servers and queues of length exactly two weakly converges to a two-dimensional reflected Ornstein-Uhlenbeck process, while processes counting longer queues converge to a deterministic system decaying to zero in constant time. This limiting system is comparable to that of the traditional Halfin-Whitt model, but there are key differences in the queueing behavior of the JSQ model. In particular, only a vanishing fraction of customers will have to wait, but those who do incur a constant order waiting time.

Keywords: queueing theory; parallel queues; diffusion models (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1287/moor.2017.0887 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:43:y:2018:i:3:p:867-886

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:43:y:2018:i:3:p:867-886