EconPapers    
Economics at your fingertips  
 

A Theory for Measures of Tail Risk

Fangda Liu () and Ruodu Wang ()
Additional contact information
Fangda Liu: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Ruodu Wang: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Mathematics of Operations Research, 2021, vol. 46, issue 3, 1109-1128

Abstract: The notion of “tail risk” has been a crucial consideration in modern risk management and financial regulation, as very well documented in the recent regulatory documents. To achieve a comprehensive understanding of the tail risk, we carry out an axiomatic study for risk measures that quantify the tail risk, that is, the behaviour of a risk beyond a certain quantile. Such risk measures are referred to as tail risk measures in this paper. The two popular classes of regulatory risk measures in banking and insurance, value at risk (VaR) and expected shortfall, are prominent, yet elementary, examples of tail risk measures. We establish a connection between a tail risk measure and a corresponding law-invariant risk measure, called its generator, and investigate their joint properties. A tail risk measure inherits many properties from its generator, but not subadditivity or convexity; nevertheless, a tail risk measure is coherent if and only if its generator is coherent. We explore further relevant issues on tail risk measures, such as bounds, distortion risk measures, risk aggregation, elicitability, and dual representations. In particular, there is no elicitable tail convex risk measure other than the essential supremum, and under a continuity condition, the only elicitable and positively homogeneous monetary tail risk measures are the VaRs.

Keywords: Primary: 91G70; secondary: 91B06; Primary: utility/preference; secondary: finance; Basel III; tail risk; risk aggregation; elicitability; value at risk (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2020.1072 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:46:y:2021:i:3:p:1109-1128

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:46:y:2021:i:3:p:1109-1128