EconPapers    
Economics at your fingertips  
 

Proximal Gradient Methods with Adaptive Subspace Sampling

Dmitry Grishchenko (), Franck Iutzeler () and Jérôme Malick ()
Additional contact information
Dmitry Grishchenko: Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38402 Saint-Martin-d’Heres, France; Laboratoire d’Informatique de Grenoble, Université Grenoble Alpes, 38401 Saint-Martin-d’Heres, France
Franck Iutzeler: Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38402 Saint-Martin-d’Heres, France
Jérôme Malick: Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38402 Saint-Martin-d’Heres, France; Centre National de la Recherche Scientifique, 75016 Paris, France

Mathematics of Operations Research, 2021, vol. 46, issue 4, 1303-1323

Abstract: Many applications in machine learning or signal processing involve nonsmooth optimization problems. This nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized proximal gradient method harnessing this underlying structure. We introduce two key components: (i) a random subspace proximal gradient algorithm; and (ii) an identification-based sampling of the subspaces. Their interplay brings a significant performance improvement on typical learning problems in terms of dimensions explored.

Keywords: Primary: 65K10; secondary: 90C30; programming: non-linear; nonsmooth optimization; identification; proximal gradient algorithm; randomized methods (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2020.1092 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:46:y:2021:i:4:p:1303-1323

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:46:y:2021:i:4:p:1303-1323