EconPapers    
Economics at your fingertips  
 

Accelerated Stochastic Algorithms for Convex-Concave Saddle-Point Problems

Renbo Zhao ()
Additional contact information
Renbo Zhao: Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Mathematics of Operations Research, 2022, vol. 47, issue 2, 1443-1473

Abstract: We develop stochastic first-order primal-dual algorithms to solve a class of convex-concave saddle-point problems. When the saddle function is strongly convex in the primal variable, we develop the first stochastic restart scheme for this problem. When the gradient noises obey sub-Gaussian distributions, the oracle complexity of our restart scheme is strictly better than any of the existing methods, even in the deterministic case. Furthermore, for each problem parameter of interest, whenever the lower bound exists, the oracle complexity of our restart scheme is either optimal or nearly optimal (up to a log factor). The subroutine used in this scheme is itself a new stochastic algorithm developed for the problem where the saddle function is nonstrongly convex in the primal variable. This new algorithm, which is based on the primal-dual hybrid gradient framework, achieves the state-of-the-art oracle complexity and may be of independent interest.

Keywords: Primary: 90C47; secondary: 90C15; 90C25; convex-concave saddle-point problems; primal-dual hybrid gradient framework; stochastic approximation; primal-dual first-order method (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1175 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:2:p:1443-1473

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:47:y:2022:i:2:p:1443-1473