M-Convex Function Minimization Under L1-Distance Constraint and Its Application to Dock Reallocation in Bike-Sharing System
Akiyoshi Shioura ()
Additional contact information
Akiyoshi Shioura: Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152-8550, Japan
Mathematics of Operations Research, 2022, vol. 47, issue 2, 1566-1611
Abstract:
In this paper, we consider a problem of minimizing an M-convex function under an L1-distance constraint (MML1); the constraint is given by an upper bound for L1-distance between a feasible solution and a given “center.” This is motivated by a nonlinear integer programming problem for reallocation of dock capacity in a bike-sharing system discussed by Freund et al. (2017). The main aim of this paper is to better understand the combinatorial structure of the dock reallocation problem through the connection with M-convexity and show its polynomial-time solvability using this connection. For this, we first show that the dock reallocation problem and its generalizations can be reformulated in the form of (MML1). We then present a pseudo-polynomial-time algorithm for (MML1) based on the steepest descent approach. We also propose two polynomial-time algorithms for (MML1) by replacing the L1-distance constraint with a simple linear constraint. Finally, we apply the results for (MML1) to the dock reallocation problem to obtain a pseudo-polynomial-time steepest descent algorithm and also polynomial-time algorithms for this problem. For this purpose, we develop a polynomial-time algorithm for a relaxation of the dock reallocation problem by using a proximity-scaling approach, which is of interest in its own right.
Keywords: Primary: 90C27; secondary: 68Q25; discrete convex function; discrete convex analysis; resource allocation problem; steepest descent algorithm; proximity-scaling algorithm (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1180 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:2:p:1566-1611
Access Statistics for this article
More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().