EconPapers    
Economics at your fingertips  
 

M-Convex Function Minimization Under L1-Distance Constraint and Its Application to Dock Reallocation in Bike-Sharing System

Akiyoshi Shioura ()
Additional contact information
Akiyoshi Shioura: Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Mathematics of Operations Research, 2022, vol. 47, issue 2, 1566-1611

Abstract: In this paper, we consider a problem of minimizing an M-convex function under an L1-distance constraint (MML1); the constraint is given by an upper bound for L1-distance between a feasible solution and a given “center.” This is motivated by a nonlinear integer programming problem for reallocation of dock capacity in a bike-sharing system discussed by Freund et al. (2017). The main aim of this paper is to better understand the combinatorial structure of the dock reallocation problem through the connection with M-convexity and show its polynomial-time solvability using this connection. For this, we first show that the dock reallocation problem and its generalizations can be reformulated in the form of (MML1). We then present a pseudo-polynomial-time algorithm for (MML1) based on the steepest descent approach. We also propose two polynomial-time algorithms for (MML1) by replacing the L1-distance constraint with a simple linear constraint. Finally, we apply the results for (MML1) to the dock reallocation problem to obtain a pseudo-polynomial-time steepest descent algorithm and also polynomial-time algorithms for this problem. For this purpose, we develop a polynomial-time algorithm for a relaxation of the dock reallocation problem by using a proximity-scaling approach, which is of interest in its own right.

Keywords: Primary: 90C27; secondary: 68Q25; discrete convex function; discrete convex analysis; resource allocation problem; steepest descent algorithm; proximity-scaling algorithm (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1180 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:2:p:1566-1611

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:47:y:2022:i:2:p:1566-1611