EconPapers    
Economics at your fingertips  
 

Scalar Multivariate Risk Measures with a Single Eligible Asset

Zachary Feinstein () and Birgit Rudloff ()
Additional contact information
Zachary Feinstein: Stevens Institute of Technology, School of Business, Hoboken, New Jersey 07030
Birgit Rudloff: Vienna University of Economics and Business, Institute for Statistics and Mathematics, 1020 Vienna, Austria

Mathematics of Operations Research, 2022, vol. 47, issue 2, 899-922

Abstract: In this paper, we present results on scalar risk measures in markets with transaction costs. Such risk measures are defined as the minimal capital requirements in the cash asset. First, some results are provided on the dual representation of such risk measures, with particular emphasis given on the space of dual variables as (equivalent) martingale measures and prices consistent with the market model. Then, these dual representations are used to obtain the main results of this paper on time consistency for scalar risk measures in markets with frictions. It is well known from the superhedging risk measure in markets with transaction costs that the usual scalar concept of time consistency is too strong and not satisfied. We will show that a weaker notion of time consistency can be defined, which corresponds to the usual scalar time consistency but under any fixed consistent pricing process. We will prove the equivalence of this weaker notion of time consistency and a certain type of backward recursion with respect to the underlying risk measure with a fixed consistent pricing process. Several examples are given, with special emphasis on the superhedging risk measure.

Keywords: Primary: 91G70; secondary: 26E25; 46A20; 91B05; dynamic risk measures; time consistency; scalarization (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1153 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:2:p:899-922

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:47:y:2022:i:2:p:899-922