EconPapers    
Economics at your fingertips  
 

One-Step Estimation with Scaled Proximal Methods

Robert Bassett () and Julio Deride ()
Additional contact information
Robert Bassett: Department of Operations Research, Naval Postgraduate School, Monterey, California 93943
Julio Deride: Department of Mathematics, Universidad Técnica Federico Santa María, Valparaíso 8940000, Chile

Mathematics of Operations Research, 2022, vol. 47, issue 3, 2366-2386

Abstract: We study statistical estimators computed using iterative optimization methods that are not run until completion. Classical results on maximum likelihood estimators (MLEs) assert that a one-step estimator (OSE), in which a single Newton-Raphson iteration is performed from a starting point with certain properties, is asymptotically equivalent to the MLE. We further develop these early-stopping results by deriving properties of one-step estimators defined by a single iteration of scaled proximal methods. Our main results show the asymptotic equivalence of the likelihood-based estimator and various one-step estimators defined by scaled proximal methods. By interpreting OSEs as the last of a sequence of iterates, our results provide insight on scaling numerical tolerance with sample size. Our setting contains scaled proximal gradient descent applied to certain composite models as a special case, making our results applicable to many problems of practical interest. Additionally, our results provide support for the utility of the scaled Moreau envelope as a statistical smoother by interpreting scaled proximal descent as a quasi-Newton method applied to the scaled Moreau envelope.

Keywords: Primary: 62F12; secondary: 65K10; 90C30; proximal operator; one-step estimator; Moreau envelope; proximal-gradient (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1212 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:3:p:2366-2386

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:47:y:2022:i:3:p:2366-2386