A Unified Framework for Bayesian and Non-Bayesian Decision Making and Inference
Massimiliano Amarante
Mathematics of Operations Research, 2022, vol. 47, issue 4, 2721-2742
Abstract:
After showing, by means of a series of examples, that paradigms alternative to the Bayesian one obtain by simply replacing the notion of approximation associated with the latter, the paper presents a unified framework for theories of decision making and inference. Given a statistical model, the algebra of bounded random variables on the sample space is mapped homomorphically into an algebra of operators on a certain Hilbert space. Then, the choice of a norm or a divergence function on the latter algebra produces a theory of decision making and inference. Examples include models from the Choquet expected utility class, models from robust statistics, the smooth model, maxmin and maxmax (as limiting cases) as well as a novel theory. The paper also contributes to Bayesian theory, which obtains in correspondence to a Hilbert norm. It shows that Bayes’ theorem can be derived from the fundamental concept of conditional expectation and that it is the only updating rule for which the operations of updating and of calculating the predictive commute.
Keywords: Primary: 91B06; secondary: 62A99; decision making; inference; statistical model; robust statistics; neo-Bayesian statistics; Bayes’ theorem; updating of capacities; axiomatic foundations (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/moor.2021.1226 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:47:y:2022:i:4:p:2721-2742
Access Statistics for this article
More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().