Sampling from the Gibbs Distribution in Congestion Games
Pieter Kleer ()
Additional contact information
Pieter Kleer: Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands
Mathematics of Operations Research, 2023, vol. 48, issue 4, 1846-1870
Abstract:
Logit dynamics is a form of randomized game dynamics in which players have a bias toward strategic deviations that give a higher improvement in cost. It is used extensively in practice. In congestion (or potential) games, the dynamics converge to the so-called Gibbs distribution over the set of all strategy profiles when interpreted as a Markov chain. In general, logit dynamics can converge slowly to the Gibbs distribution, but beyond that, not much is known about its algorithmic aspects, nor that of the Gibbs distribution. In this work, we are interested in the following two questions for congestion games: (i) Is there an efficient algorithm for sampling from the Gibbs distribution? (ii) If yes, does there also exist natural randomized dynamics that converge quickly to the Gibbs distribution? We first study these questions in extension parallel congestion games, a well-studied special case of symmetric network congestion games. As our main result, we show that there is a simple variation on the logit dynamics that converges quickly to the Gibbs distribution in such games. We also address the first question for the class of so-called capacitated uniform congestion games and the second question for max cut games played on a complete graph. To prove our results, we rely on the recent breakthrough work of Anari et al. (2019) regarding the approximate sampling of a base of a matroid according to a strongly log-concave probability distribution.
Keywords: Primary: 91A68; secondary: 91A14; congestion games; discrete convexity; Gibbs distribution; approximate sampling (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/moor.2022.1322 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:48:y:2023:i:4:p:1846-1870
Access Statistics for this article
More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().