EconPapers    
Economics at your fingertips  
 

The Secretary Problem with Predictions

Kaito Fujii () and Yuichi Yoshida ()
Additional contact information
Kaito Fujii: National Institute of Informatics, Tokyo 101-8430, Japan
Yuichi Yoshida: National Institute of Informatics, Tokyo 101-8430, Japan

Mathematics of Operations Research, 2024, vol. 49, issue 2, 1241-1262

Abstract: The value maximization version of the secretary problem is the problem of hiring a candidate with the largest value from a randomly ordered sequence of candidates. In this work, we consider a setting where predictions of candidate values are provided in advance. We propose an algorithm that achieves a nearly optimal value if the predictions are accurate and results in a constant-factor competitive ratio otherwise. We also show that the worst-case competitive ratio of an algorithm cannot be higher than some constant < 1 / e , which is the best possible competitive ratio when we ignore predictions, if the algorithm performs nearly optimally when the predictions are accurate. Additionally, for the multiple-choice secretary problem, we propose an algorithm with a similar theoretical guarantee. We empirically illustrate that if the predictions are accurate, the proposed algorithms perform well; meanwhile, if the predictions are inaccurate, performance is comparable to existing algorithms that do not use predictions.

Keywords: Primary: 60G40; secondary: 90C27; learning-augmented algorithms; secretary problems; optimal stopping theory (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2022.0031 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:49:y:2024:i:2:p:1241-1262

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormoor:v:49:y:2024:i:2:p:1241-1262