A New Dynamic Programming Approach for Spanning Trees with Chain Constraints and Beyond
Martin Nägele () and
Rico Zenklusen ()
Additional contact information
Martin Nägele: University of Bonn, 53113 Bonn, Germany
Rico Zenklusen: ETH Zürich, 8092 Zürich, Switzerland
Mathematics of Operations Research, 2024, vol. 49, issue 4, 2078-2108
Abstract:
Short spanning trees subject to additional constraints are important building blocks in various approximation algorithms, and moreover, they capture interesting problem settings on their own. Especially in the context of the traveling salesman problem (TSP), new techniques for finding spanning trees with well-defined properties have been crucial in recent progress. We consider the problem of finding a spanning tree subject to constraints on the edges in a family of cuts forming a laminar family of small width. Our main contribution is a new dynamic programming approach in which the value of a table entry does not only depend on the values of previous table entries, as is usually the case, but also on a specific representative solution saved together with each table entry. This allows for handling a broad range of constraint types. In combination with other techniques—including negatively correlated rounding and a polyhedral approach that, in the problems we consider, allows for avoiding potential losses in the objective through the randomized rounding—we obtain several new results. We first present a quasi-polynomial time algorithm for the minimum chain-constrained spanning tree problem with an essentially optimal guarantee. More precisely, each chain constraint is violated by a factor of at most 1 + ε , and the cost is no larger than that of an optimal solution not violating any chain constraint. The best previous procedure is a bicriteria approximation violating each chain constraint by up to a constant factor and losing another factor in the objective. Moreover, our approach can naturally handle lower bounds on the chain constraints, and it can be extended to constraints on cuts forming a laminar family of constant width. Furthermore, we show how our approach can also handle parity constraints (or, more precisely, a proxy thereof) as used in the context of (path) TSP and one of its generalizations and discuss implications in this context.
Keywords: Primary: 90C27; 05C85; combinatorial optimization; constrained minimum spanning tree; dynamic programming (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/moor.2023.0012 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:49:y:2024:i:4:p:2078-2108
Access Statistics for this article
More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().