EconPapers    
Economics at your fingertips  
 

Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity

Shaoning Han (), Ying Cui () and Jong-Shi Pang ()
Additional contact information
Shaoning Han: Department of Mathematics, National University of Singapore, Singapore 119076
Ying Cui: Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94720
Jong-Shi Pang: Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089

Mathematics of Operations Research, 2025, vol. 50, issue 3, 2175-2198

Abstract: The minimization of nonlower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance constrained stochastic programs, a Heaviside composite optimization problem is one whose objective and constraints are defined by sums of possibly nonlinear multiples of such composite functions. Via a pulled-out formulation, a pseudostationarity concept for a feasible point was introduced in an earlier work as a necessary condition for a local minimizer of a Heaviside composite optimization problem. The present paper extends this previous study in several directions: (a) showing that pseudostationarity is implied by (and thus, weaker than) a sharper subdifferential-based stationarity condition that we term epistationarity; (b) introducing a set-theoretic sufficient condition, which we term a local convexity-like property, under which an epistationary point of a possibly nonlower semicontinuous optimization problem is a local minimizer; (c) providing several classes of Heaviside composite functions satisfying this local convexity-like property; (d) extending the epigraphical formulation of a nonnegative multiple of a Heaviside composite function to a lifted formulation for arbitrarily signed multiples of the Heaviside composite function, based on which we show that an epistationary solution of the given Heaviside composite program with broad classes of B-differentiable component functions can in principle be approximately computed by surrogation methods.

Keywords: Primary: 90C26; 90C30; nonsmooth analysis; lower semicontinuity; Heaviside functions; local convexity-like property (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2023.0295 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:50:y:2025:i:3:p:2175-2198

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-09-04
Handle: RePEc:inm:ormoor:v:50:y:2025:i:3:p:2175-2198