On Dufresne’s Translated Perpetuity and Some Black-Scholes Annuities
Christophe Profeta ()
Additional contact information
Christophe Profeta: Laboratoire d’Analyse et Probabilités, Université d’Évry - Val d’Essonne, Bâtiment I.B.G.B.I., Évry, France
Analítika, 2014, vol. 7, issue 1, 7-19
Abstract:
Let $(mathcal{E}_t, tgeq0)$ be a geometric Brownian motion. In this paper, we compute the law of a generalization of Dufresne’s translated perpetuity (following the terminology of Salminen-Yor) : $$ int_0^{+infty} frac{mathcal{E}_s^2}{(mathcal{E}_s^2+2 amathcal{E}_s +b)^2} ds,$$ and show that, in some cases, this perpetuity is identical in law with the first hitting time of a three-dimensional Bessel process with drift.We also study the law of the following pair of annuities $$left(int_0^{t}left(mathcal{E}_s-1 right)^+ ds , quad int_0^{t}left(mathcal{E}_s-1 right)^-ds right)$$ via a Feynman-Kac approach, and discuss some particular cases for which we are able to recover the associated perpetuities.
Keywords: Geometric Brownian motion; Bessel processes; Feynman-Kac formula (search for similar items in EconPapers)
JEL-codes: J60 J65 (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.numericaiid.com/pdf/vol7/ANAJun2014_7_19.pdf (application/pdf)
http://www.numericaiid.com/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inp:inpana:v:7:y:2014:i:1:p:7-19
Access Statistics for this article
More articles in Analítika from Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis
Bibliographic data for series maintained by ( this e-mail address is bad, please contact ).