Modelos de Algoritmos Genéticos y Redes Neuronales en la Predicción de Índices Bursátiles Asiáticos
Antonino Parisini,
Franco Parisini and
David Díaz
Authors registered in the RePEc Author Service: Franco Parisi
Latin American Journal of Economics-formerly Cuadernos de Economía, 2006, vol. 43, issue 128, 251-284
Abstract:
This study analyzes the capacity of multivariated models constructed from genetic algorithms and artificial neural networks to predict the sign of the weekly variations of the Asian stock-market indexes Nikkei225, Hang Seng, Shanghai Composite, Seoul Comp
Keywords: Genetic algorithms; artificial neural networks; forecast capacity (search for similar items in EconPapers)
JEL-codes: G10 G14 G15 (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.economia.uc.cl/docs/128paria.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ioe:cuadec:v:43:y:2006:i:128:p:251-284
Ordering information: This journal article can be ordered from
Access Statistics for this article
Latin American Journal of Economics-formerly Cuadernos de Economía is currently edited by Raimundo Soto
More articles in Latin American Journal of Economics-formerly Cuadernos de Economía from Instituto de Economía. Pontificia Universidad Católica de Chile. Contact information at EDIRC.
Bibliographic data for series maintained by Jaime Casassus ().