An Empirical Method for Decomposing the Contributions of Land and Building Values to Housing Value
Kuan-Lun Pan (),
Hsiao Jung Teng (),
Shih-Yuan Lin () and
Yu En Cheng ()
Additional contact information
Kuan-Lun Pan: National Taiwan University
Hsiao Jung Teng: Anfu Co., Ltd
Shih-Yuan Lin: National Chengchi University
Yu En Cheng: Anfu Co., Ltd
International Real Estate Review, 2021, vol. 24, issue 3, 385-403
Abstract:
This paper develops an empirical method that uses two separate housing related components to estimate housing value: land and building. The artificial neural network (ANN) technique is used to iteratively solve for two hedonic models simultaneously by minimizing the difference in the observed total value and the sum of the estimated land and building values. This method enables one to objectively separate housing value into land and building components. Using actual sales transaction data from Taipei City, we estimate the land value as a share of the total housing value. The results show that the land value accounts for a higher share with older properties. The share of the land value of low-rise buildings tends to be higher than that of high-rise buildings. The share of the land value can deviate by 20 percentage points between more or less expensive housing communities within Taipei City.
Keywords: Land Value; Building Value; Housing Value; Apportionment Theory; Artificial Neural Network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.gssinst.org/irer/wp-content/uploads/20 ... to-Housing-Value.pdf Full text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ire:issued:v:24:n:03:2021:p:385-403
Ordering information: This journal article can be ordered from
Global Social Science Institute, 9200 Corporate Blvd., Suite 420 Rockville, MD 20850
https://www.gssinst.org/gssinst/index.html
Access Statistics for this article
International Real Estate Review is currently edited by Professor Sing Tien Foo and Professor Ko Wang
More articles in International Real Estate Review from Global Social Science Institute Global Social Science Institute, 9200 Corporate Blvd., Suite 420 Rockville, MD 20850.
Bibliographic data for series maintained by IRER Graduate Assistant/Webmaster ().