Prediction Using Artificial Neural Network of Turkey's Housing Sales Value
Burcu Yaman Selci ()
Additional contact information
Burcu Yaman Selci: Pamukkale Universitesi, Denizli Sosyal Bilimler Meslek Yuksekokulu Dis Ticaret Bolumu, Denizli, Turkiye
EKOIST Journal of Econometrics and Statistics, 2021, vol. 0, issue 35, 19-32
Abstract:
In order to keep the supply and demand in the real estate sector in balance, it is very important to make accurate estimates of house sales with an analysis method that can make strong predictions. However, it is noteworthy that the number of studies focusing on house sales estimates in the literature is quite low and the number of studies that make predictions with artificial neural networks from new generation techniques is remarkable. Therefore the aim of this study is to contribute to the prediction and forecasting of sales literature houses in Turkey performing with artificial neural networks. In the study, housing-price index, new housing-price index, non-new housing-price index, house sales to foreigners, interest rates opened to housing loans over TL, consumer price index and exchange rate were selected as independent variables and residential sales were used as dependent variables. A model has been developed in neural networks. The data were taken monthly to cover the periods of 2013: 01-2019: 12 and the analyzes were carried out in the MATLAB R2013a program. Using the NARX network for prediction and forecasting analysis, the prediction of 2013: 01- 2019: 12 period and the prediction of 2020: 01 period was obtained. MSE was used as a performance criterion. As a result of the analysis, it has been determined that the predicted values produced by artificial neural networks and the predictive value of 2020: 01 are quite close to real values and artificial neural networks can detect seasonal effects. The smallness of the MSE value also proved the success of forecasting and forecasting. This confirms that artificial neural networks produce strong statistical results in predicting and predicting residential sales.
Keywords: Housing Sales; Neural Networks; Forecasting; Prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://cdn.istanbul.edu.tr/file/JTA6CLJ8T5/96F120FBD41D4D32BB29DA789196807C (application/pdf)
https://iupress.istanbul.edu.tr/en/journal/ekoist/ ... lari-ile-ongorulmesi (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ist:ekoist:v:0:y:2021:i:35:p:19-32
DOI: 10.26650/ekoist.2021.35.180033
Access Statistics for this article
EKOIST Journal of Econometrics and Statistics is currently edited by Aycan HEPSAĞ
More articles in EKOIST Journal of Econometrics and Statistics from Istanbul University, Faculty of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Istanbul University Press Operational Team (Ertuğrul YAŞAR) ().