A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns
Toshiaki Watanabe
Journal of Applied Econometrics, 1999, vol. 14, issue 2, 101-21
Abstract:
This paper develops a new method for the analysis of stochastic volatility (SV) models. Since volatility is a latent variable in SV models, it is difficult to evaluate the exact likelihood. In this paper, a non-linear filter which yields the exact likelihood of SV models is employed. Solving a series of integrals in this filter by piecewise linear approximations with randomly chosen nodes produces the likelihood, which is maximized to obtain estimates of the SV parameters. A smoothing algorithm for volatility estimation is also constructed. Monte Carlo experiments show that the method performs well with respect to both parameter estimates and volatility estimates. We illustrate the method by analysing daily stock returns on the Tokyo Stock Exchange. Since the method can be applied to more general models, the SV model is extended so that several characteristics of daily stock returns are allowed, and this more general model is also estimated.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://qed.econ.queensu.ca:80/jae/1999-v14.2/ Supporting data files and programs (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jae:japmet:v:14:y:1999:i:2:p:101-21
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().