Random Recursive Partitioning: a matching method for the estimation of the average treatment effect
Giuseppe Porro and
Stefano Iacus ()
Journal of Applied Econometrics, 2009, vol. 24, issue 1, 163-185
Abstract:
In this paper we introduce the Random Recursive Partitioning (RRP) matching method. RRP generates a proximity matrix which might be useful in econometric applications like average treatment effect estimation. RRP is a Monte Carlo method that randomly generates non-empty recursive partitions of the data and evaluates the proximity between two observations as the empirical frequency they fall in a same cell of these random partitions over all Monte Carlo replications. From the proximity matrix it is possible to derive both graphical and analytical tools to evaluate the extent of the common support between data sets. The RRP method is “honest” in that it does not match observations “at any cost”: if data sets are separated, the method clearly states it.
The match obtained with RRP is invariant under monotonic transformation of the data. Average treatment effect estimators derived from the proximity matrix seem to be competitive compared to more commonly used estimators. RRP method does not require a particular structure of the data and for this reason it can be applied when distances like Mahalanobis or Euclidean are not suitable, in the presence of missing data or when the estimated propensity score is too sensitive to model specifications. Copyright © 2008 John Wiley & Sons, Ltd.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1002/jae.1026 Link to full text; subscription required (text/html)
http://qed.econ.queensu.ca:80/jae/2009-v24.1/ Supporting data files and programs (text/html)
Related works:
Working Paper: Random recursive partitioning: a matching method for the estimation of the average treatment effect (2006) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jae:japmet:v:24:y:2009:i:1:p:163-185
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
DOI: 10.1002/jae.1026
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().