Bayesian quantile regression methods
Tony Lancaster and
Sung Jae Jun
Journal of Applied Econometrics, 2010, vol. 25, issue 2, 287-307
Abstract:
This paper is a study of the application of Bayesian exponentially tilted empirical likelihood to inference about quantile regressions. In the case of simple quantiles we show the exact form for the likelihood implied by this method and compare it with the Bayesian bootstrap and with Jeffreys' method. For regression quantiles we derive the asymptotic form of the posterior density. We also examine Markov chain Monte Carlo simulations with a proposal density formed from an overdispersed version of the limiting normal density. We show that the algorithm works well even in models with an endogenous regressor when the instruments are not too weak. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://hdl.handle.net/10.1002/jae.1069 Link to full text; subscription required (text/html)
http://qed.econ.queensu.ca:80/jae/2010-v25.2/ Supporting data files and programs (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jae:japmet:v:25:y:2010:i:2:p:287-307
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
DOI: 10.1002/jae.1069
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().