Implementation of Efficient Online English Learning System and Student Performance Prediction Using Linear K-Nearest Neighbors (L-Knn) Method
K. Kashinath and
R. L. N. Raju
World Journal of English Language, 2022, vol. 12, issue 3, 235
Abstract:
Technical assistance for the establishment of a distance learning environment for learning English is provided by the advancement of information technology and the educational information process. People are still getting used to online teaching methods, and it is becoming more widely accepted. E-learning and online education have advanced significantly in recent years. The teaching paradigm has moved from traditional classroom learning to dynamic web-based learning. As a result, instead of static information, learners have received dynamic learning material tailored to their abilities, requirements, and preferences. To improve the English learning material efficiency, this paper implements an online English learning system based on efficient learning material selection. The English learning materials are preprocessed using normalization. The dimensionality reduction of the data is done using the Kernel-based-Independent Component Analysis (K-ICA). Data classification is performed using the Hypothetical Naïve Bayes Algorithm (HNBA). The student performance like learning efficiency, interactive accuracy rate, and artistic skills are predicted using the linear k-Nearest Neighbors (L-KNN). The proposed system can be simulated by employing the MATLAB tool and the performance is compared with other conventional methodologies. The findings of this study reveal that the presented online learning method may significantly increase students' oral and written skills.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.sciedupress.com/journal/index.php/wjel/article/download/21803/13504 (application/pdf)
https://www.sciedupress.com/journal/index.php/wjel/article/view/21803 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jfr:wjel11:v:12:y:2022:i:3:p:235
Access Statistics for this article
World Journal of English Language is currently edited by Joe Nelson
More articles in World Journal of English Language from Sciedu Press
Bibliographic data for series maintained by Sciedu Press ().