Der Nicht-Stichprobenfehler und seine Zerlegung in die beiden Komponenten „glatter Wert“ – wahrer Wert plus systematischer Fehler- und „Zufallsfehler“ / The Non-Sampling Error and its Decomposition into the Two Components “Permanent Value” – True Value plus Systematic Error- and “Random Error”: Schätzung mit Hilfe der Variate Difference-Methode und Analyse der horizontalen Aggregation individueller Zufallsfehler / Estimation by Means of the Variate Difference Method and Analysis of the Horizontal Aggregation of Individual Random Errors
Strecker Heinrich
Additional contact information
Strecker Heinrich: Emer. o. Professor Dr. rer. nat. Universität Tübingen und Honorarprofessor der Universität München, Rosenstr. 11, D-82319 Starnberg bei München, Germany
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), 2004, vol. 224, issue 1-2, 198-230
Abstract:
In order to judge the quality of survey data it is necessary above all to estimate the size of the individual error components, i. e. the systematic and the random errors in the responses (survey data) of the surveyed units and, if feasible, to determinate their true value. This paper develops an estimation procedure by which the individual random errors included in individual response values can be ascertained as well as the total random error of a survey. As costumary in statistical surveys an additive linear error model is assumed: Individual response value = true value + systematic error + random error. The true value of a characteristic together with its systematic error are referred to as the permanent (smooth) component of the survey value. To assess the value of the permanent component the variate difference method is suggested in analogy to time series analysis, and the difference between response and estimated permanent component is the estimated random error. The permanent component is being estimated for each unit in a first stochastic approximation by means of an average of responses in three (re-)enumerations. With more than three (re-)enumarations further individual random errors and their average could be computed, this meaning a horizontal aggregation of individual estimates. This procedure is demonstrated for a simulated case.
Keywords: Variate Difference Method for estimating individual random errors; main survey and re-enumerations; linear error model for the unit i; response variability; Variate Difference-Methode zur Schätzung individueller Zufallsfehler; Haupt- und Wiederholungszählungen; lineares Fehlermodell für die Einheit i; Antwortvariabilität; Variate Difference Method for estimating individual random errors; main survey and re-enumerations; linear error model for the unit i; response variability (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jbnst-2004-1-215 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jns:jbstat:v:224:y:2004:i:1-2:p:198-230
DOI: 10.1515/jbnst-2004-1-215
Access Statistics for this article
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik) is currently edited by Peter Winker
More articles in Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik) from De Gruyter
Bibliographic data for series maintained by Peter Golla ().