Outlier Detection in Regression Models with ARIMA Errors Using Robust Estimates
Bianco, Ana Maria, et al
Journal of Forecasting, 2001, vol. 20, issue 8, 565-79
Abstract:
A diagnostic procedure for detecting additive and innovation outliers as well as level shifts in a regression model with ARIMA errors is introduced. The procedure is based on a robust estimate of the model parameters and on innovation residuals computed by means of robust filtering. A Monte Carlo study shows that, when there is a large proportion of outliers, this procedure is more powerful than the classical methods based on maximum likelihood type estimates and Kalman filtering. Copyright © 2001 by John Wiley & Sons, Ltd.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (8)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:20:y:2001:i:8:p:565-79
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().