EconPapers    
Economics at your fingertips  
 

Outlier Detection in Regression Models with ARIMA Errors Using Robust Estimates

Bianco, Ana Maria, et al

Journal of Forecasting, 2001, vol. 20, issue 8, 565-79

Abstract: A diagnostic procedure for detecting additive and innovation outliers as well as level shifts in a regression model with ARIMA errors is introduced. The procedure is based on a robust estimate of the model parameters and on innovation residuals computed by means of robust filtering. A Monte Carlo study shows that, when there is a large proportion of outliers, this procedure is more powerful than the classical methods based on maximum likelihood type estimates and Kalman filtering. Copyright © 2001 by John Wiley & Sons, Ltd.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (8)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:20:y:2001:i:8:p:565-79

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jof:jforec:v:20:y:2001:i:8:p:565-79