Vector smooth transition regression models for US GDP and the composite index of leading indicators
Maximo Camacho
Journal of Forecasting, 2004, vol. 23, issue 3, 173-196
Abstract:
In this paper, I extend to a multiple-equation context the linearity, model selection and model adequacy tests recently proposed for univariate smooth transition regression models. Using this result, I examine the nonlinear forecasting power of the Conference Board composite index of leading indicators to predict both output growth and the business-cycle phases of the US economy in real time. Copyright © 2004 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (94)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.912 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:23:y:2004:i:3:p:173-196
DOI: 10.1002/for.912
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().