Updating ARMA predictions for temporal aggregates
Yue Fang () and
Sergio G. Koreisha
Additional contact information
Sergio G. Koreisha: University of Oregon, USA, Postal: University of Oregon, USA
Journal of Forecasting, 2004, vol. 23, issue 4, 275-296
Abstract:
This article develops and extends previous investigations on the temporal aggregation of ARMA predications. Given a basic ARMA model for disaggregated data, two sets of predictors may be constructed for future temporal aggregates: predictions based on models utilizing aggregated data or on models constructed from disaggregated data for which forecasts are updated as soon as the new information becomes available. We show that considerable gains in efficiency based on mean-square-error-type criteria can be obtained for short-term predications when using models based on updated disaggregated data. However, as the prediction horizon increases, the gain in using updated disaggregated data diminishes substantially. In addition to theoretical results associated with forecast efficiency of ARMA models, we also illustrate our findings with two well-known time series. Copyright © 2004 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.913 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:23:y:2004:i:4:p:275-296
DOI: 10.1002/for.913
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().