EconPapers    
Economics at your fingertips  
 

Local to unity, long-horizon forecasting thresholds for model selection in the AR(1)

John Turner ()

Journal of Forecasting, 2004, vol. 23, issue 7, 513-539

Abstract: This article introduces a novel framework for analysing long-horizon forecasting of the near non-stationary AR(1) model. Using the local to unity specification of the autoregressive parameter, I derive the asymptotic distributions of long-horizon forecast errors both for the unrestricted AR(1), estimated using an ordinary least squares (OLS) regression, and for the random walk (RW). I then identify functions, relating local to unity 'drift' to forecast horizon, such that OLS and RW forecasts share the same expected square error. OLS forecasts are preferred on one side of these 'forecasting thresholds', while RW forecasts are preferred on the other. In addition to explaining the relative performance of forecasts from these two models, these thresholds prove useful in developing model selection criteria that help a forecaster reduce error. Copyright © 2004 John Wiley & Sons, Ltd.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1002/for.919 Link to full text; subscription required (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:23:y:2004:i:7:p:513-539

DOI: 10.1002/for.919

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jof:jforec:v:23:y:2004:i:7:p:513-539