Forecasting time series with long memory and level shifts
Philip Hans Franses and
Namwon Hyung
Additional contact information
Namwon Hyung: University of Seoul, Korea, Postal: University of Seoul, Korea
Journal of Forecasting, 2005, vol. 24, issue 1, 1-16
Abstract:
It is well known that some economic time series can be described by models which allow for either long memory or for occasional level shifts. In this paper we propose to examine the relative merits of these models by introducing a new model, which jointly captures the two features. We discuss representation and estimation. Using simulations, we demonstrate its forecasting ability, relative to the one-feature models, both in terms of point forecasts and interval forecasts. We illustrate the model for daily S&P500 volatility. Copyright © 2005 John Wiley & Sons, Ltd.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.937 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:24:y:2005:i:1:p:1-16
DOI: 10.1002/for.937
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().