Preliminary data and econometric forecasting: an application with the Bank of Italy Quarterly Model
Fabio Busetti
Journal of Forecasting, 2006, vol. 25, issue 1, 1-23
Abstract:
This paper discusses the use of preliminary data in econometric forecasting. The standard practice is to ignore the distinction between preliminary and final data, the forecasts that do so here being termed naïve forecasts. It is shown that in dynamic models a multistep-ahead naïve forecast can achieve a lower mean square error than a single-step-ahead one, as it is less affected by the measurement noise embedded in the preliminary observations. The minimum mean square error forecasts are obtained by optimally combining the information provided by the model and the new information contained in the preliminary data, which can be done within the state space framework as suggested in numerous papers. Here two simple, in general suboptimal, methods of combining the two sources of information are considered: modifying the forecast initial conditions by means of standard regressions and using intercept corrections. The issues are explored using Italian national accounts data and the Bank of Italy Quarterly Econometric Model. Copyright © 2006 John Wiley & Sons, Ltd.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.973 Link to full text; subscription required (text/html)
Related works:
Working Paper: Preliminary Data and Econometric Forecasting: An Application with the Bank of Italy Quarterly Model (2004) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:25:y:2006:i:1:p:1-23
DOI: 10.1002/for.973
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().