Detrending economic time series: a Bayesian generalization of the Hodrick-Prescott filter
Thomas Trimbur
Journal of Forecasting, 2006, vol. 25, issue 4, 247-273
Abstract:
This article develops a new method for detrending time series. It is shown how, in a Bayesian framework, a generalized version of the Hodrick-Prescott filter is obtained by specifying prior densities on the signal-to-noise ratio (q) in the underlying unobserved components model. This helps ensure an appropriate degree of smoothness in the estimated trend while allowing for uncertainty in q. The article discusses the important issue of prior elicitation for time series recorded at different frequencies. By combining prior expectations with the likelihood, the Bayesian approach permits detrending in a way that is more consistent with the properties of the series. The method is illustrated with some quarterly and annual US macroeconomic series. Copyright © 2006 John Wiley & Sons, Ltd.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.987 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:25:y:2006:i:4:p:247-273
DOI: 10.1002/for.987
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().