Understanding and predicting sovereign debt rescheduling: a comparison of the areas under receiver operating characteristic curves
Pedro Rodriguez and
Arnulfo Rodriguez
Additional contact information
Arnulfo Rodriguez: Banco de México, Mexico City, Mexico, Postal: Banco de México, Mexico City, Mexico
Journal of Forecasting, 2006, vol. 25, issue 7, 459-479
Abstract:
This paper extends the existing literature on empirical research in the field of sovereign debt. To the authors' knowledge, only one study in the area of sovereign debt has used a variety of statistical methodologies to test the reliability of their predictions and to compare their performance against one another. However, those comparisons across models have been made in terms of different probability cut-off points and mean squared errors. Moreover, the issue of interpretability has not been addressed in terms of interactions among explanatory variables with their correspondent debt rescheduling threshold level. The areas under the Receiver Operating Characteristic (ROC) curves are used to compare the discrimination power of statistical models. This paper tests logit, MARS, tree-based and neural network models. Analyses of the relative importance of variables and deviance were done. All of the models rank the previous payment history as the most important explanatory variable. Copyright © 2006 John Wiley & Sons, Ltd.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.998 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:25:y:2006:i:7:p:459-479
DOI: 10.1002/for.998
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().