Optimal prediction with nonstationary ARFIMA model
Mohamed Boutahar
Journal of Forecasting, 2007, vol. 26, issue 2, 95-111
Abstract:
We propose two methods to predict nonstationary long-memory time series. In the first one we estimate the long-range dependent parameter d by using tapered data; we then take the nonstationary fractional filter to obtain stationary and short-memory time series. In the second method, we take successive differences to obtain a stationary but possibly long-memory time series. For the two methods the forecasts are based on those obtained from the stationary components. Copyright © 2007 John Wiley & Sons, Ltd.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1012 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:26:y:2007:i:2:p:95-111
DOI: 10.1002/for.1012
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().