EconPapers    
Economics at your fingertips  
 

Forecasting real-time data allowing for data revisions

Kosei Fukuda ()

Journal of Forecasting, 2007, vol. 26, issue 6, 429-444

Abstract: A modeling approach to real-time forecasting that allows for data revisions is shown. In this approach, an observed time series is decomposed into stochastic trend, data revision, and observation noise in real time. It is assumed that the stochastic trend is defined such that its first difference is specified as an AR model, and that the data revision, obtained only for the latest part of the time series, is also specified as an AR model. The proposed method is applicable to the data set with one vintage. Empirical applications to real-time forecasting of quarterly time series of US real GDP and its eight components are shown to illustrate the usefulness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1002/for.1032 Link to full text; subscription required (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:26:y:2007:i:6:p:429-444

DOI: 10.1002/for.1032

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jof:jforec:v:26:y:2007:i:6:p:429-444