Evaluation of correlation forecasting models for risk management
Vasiliki Skintzi and
Spyros Xanthopoulos-Sisinis
Additional contact information
Spyros Xanthopoulos-Sisinis: Financial Engineering Research Centre, Department of Management Science and Technology, Athens University of Economics and Business, Athens, Greece, Postal: Financial Engineering Research Centre, Department of Management Science and Technology, Athens University of Economics and Business, Athens, Greece
Journal of Forecasting, 2007, vol. 26, issue 7, 497-526
Abstract:
Reliable correlation forecasts are of paramount importance in modern risk management systems. A plethora of correlation forecasting models have been proposed in the open literature, yet their impact on the accuracy of value-at-risk calculations has not been explicitly investigated. In this paper, traditional and modern correlation forecasting techniques are compared using standard statistical and risk management loss functions. Three portfolios consisting of stocks, bonds and currencies are considered. We find that GARCH models can better account for the correlation's dynamic structure in the stock and bond portfolios. On the other hand, simpler specifications such as the historical mean model or simple moving average models are better suited for the currency portfolio. Copyright © 2007 John Wiley & Sons, Ltd.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1036 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:26:y:2007:i:7:p:497-526
DOI: 10.1002/for.1036
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().