Traditional versus novel forecasting techniques: how much do we gain?
Viviana Fernandez
Journal of Forecasting, 2008, vol. 27, issue 7, 637-648
Abstract:
This article applies two novel techniques to forecast the value of US manufacturing shipments over the period 1956-2000: wavelets and support vector machines (SVM). Wavelets have become increasingly popular in the fields of economics and finance in recent years, whereas SVM has emerged as a more user-friendly alternative to artificial neural networks. These two methodologies are compared with two well-known time series techniques: multiplicative seasonal autoregressive integrated moving average (ARIMA) and unobserved components (UC). Based on forecasting accuracy and encompassing tests, and forecasting combination, we conclude that UC and ARIMA generally outperform wavelets and SVM. However, in some cases the latter provide valuable forecasting information that it is not contained in the former. Copyright © 2008 John Wiley & Sons, Ltd.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1066 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:27:y:2008:i:7:p:637-648
DOI: 10.1002/for.1066
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().