A threshold factor multivariate stochastic volatility model
Mike K. P. So and
C. Y. Choi
Additional contact information
Mike K. P. So: Hong Kong University of Science and Technology, Hong Kong, Postal: Hong Kong University of Science and Technology, Hong Kong
C. Y. Choi: Hong Kong University of Science and Technology, Hong Kong, Postal: Hong Kong University of Science and Technology, Hong Kong
Journal of Forecasting, 2009, vol. 28, issue 8, 712-735
Abstract:
A new multivariate stochastic volatility model is developed in this paper. The main feature of this model is to allow threshold asymmetry in a factor covariance structure. The new model provides a parsimonious characterization of volatility and correlation asymmetry in response to market news. Statistical inferences are drawn from Markov chain Monte Carlo methods. We introduce news impact analysis to analyze volatility asymmetry with a factor structure. This analysis helps us to study different responses of volatility to historical market information in a multivariate volatility framework. Our model is successful when applied to an extensive empirical study of twenty stocks. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1123 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:28:y:2009:i:8:p:712-735
DOI: 10.1002/for.1123
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().