Identifying business cycle turning points with sequential Monte Carlo methods: an online and real-time application to the Euro area
Monica Billio and
Roberto Casarin
Journal of Forecasting, 2010, vol. 29, issue 1-2, 145-167
Abstract:
We propose a new approach for detecting turning points and forecasting the level of economic activity in the business cycle. We make use of coincident indicators and of nonlinear and non-Gaussian latent variable models. We thus combine the ability of nonlinear models to capture the asymmetric features of the business cycle with information on the current state of the economy provided by coincident indicators. Our approach relies upon sequential Monte Carlo filtering techniques applied to time-nonhomogenous Markov-switching models. The transition probabilities are driven by a beta-distributed stochastic component and by a set of exogenous variables. We illustrate, in a full Bayesian and online context, the effectiveness of the methodology. We also measure its ability to identify turning points and to forecast the European business cycle on both realtime and last-revised data. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1148 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:29:y:2010:i:1-2:p:145-167
DOI: 10.1002/for.1148
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().