Variable selection in STAR models with neighbourhood effects using genetic algorithms
Isolina Alberto,
Asunción Beamonte,
Pilar Gargallo,
Pedro M. Mateo and
Manuel Salvador
Journal of Forecasting, 2010, vol. 29, issue 8, 728-750
Abstract:
In this paper we deal with the problem of variable selection in spatiotemporal autoregressive (STAR) models with neighbourhood effects. We propose a procedure to carry out the selection process, taking into account the uncertainty associated with estimation of the parameters and the predictive behaviour of the compared models, in order to give more realism to the analysis. We set up a multi-objective programming problem that combines the use of different criteria to measure both these aspects. We use genetic algorithms which are very flexible and suitable for our multicriteria decision problem. In particular, the procedure allows us to estimate the number of spatial and temporal nearest neighbours as well as their relative effects. The methodology is illustrated through an application to the real estate market of Zaragoza. Copyright (C) 2010 John Wiley & Son, Ltd.
Keywords: STAR; variable selection; genetic algorithms; neighbourhood effects (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1164
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:29:y:2010:i:8:p:728-750
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().