EconPapers    
Economics at your fingertips  
 

Adaptive Robust Regression by Using a Nonlinear Regression Program

Mortaza Jamshidian

Journal of Statistical Software, 1999, vol. 004, issue i06

Abstract: Robust regression procedures have considerable attention in mathematical statistics literature. They, however, have not received nearly as much attention by practitioners performing data analysis. A contributing factor to this may be the lack of availability of these procedures in commonly used statistical software. In this paper we propose algorithms for obtaining parameter estimates and their asymptotic standard errors when fitting regression models to data assuming normal/independent errors. The algorithms proposed can be implemented in the commonly available nonlinear regression programs. We review a nubmer of previously proposed algorithms. As we discuss, these require special code and are difficult to implement in a nonlinear regression program. Methods of implementing the proposed algorithms in SAS-NLIN is discussed. Specifically, the two applications of regeression with the t and the slash family errors are discussed in detail. SAS NLIN and S-plus instructions are given for these two examples. Minor modification of these instructions can solve other problems at hand.

Date: 1999-05-13
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v004i06/tdistIIr1.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v004i06/code.zip

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:004:i06

DOI: 10.18637/jss.v004.i06

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:004:i06