Algorithms for Spectral Analysis of Irregularly Sampled Time Series
Adolf Mathias,
Florian Grond,
Ramon Guardans,
Detlef Seese,
Miguel Canela and
Hans H. Diebner
Journal of Statistical Software, 2004, vol. 011, issue i02
Abstract:
In this paper, we present a spectral analysis method based upon least square approximation. Our method deals with nonuniform sampling. It provides meaningful phase information that varies in a predictable way as the samples are shifted in time. We compare least square approximations of real and complex series, analyze their properties for sample count towards infinity as well as estimator behaviour, and show the equivalence to the discrete Fourier transform applied onto uniformly sampled data as a special case. We propose a way to deal with the undesirable side effects of nonuniform sampling in the presence of constant offsets. By using weighted least square approximation, we introduce an analogue to the Morlet wavelet transform for nonuniformly sampled data. Asymptotically fast divide-and-conquer schemes for the computation of the variants of the proposed method are presented. The usefulness is demonstrated in some relevant applications.
Date: 2004-05-19
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v011i02/v11i02.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 11i02/nuspectral.tgz
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:011:i02
DOI: 10.18637/jss.v011.i02
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().