EconPapers    
Economics at your fingertips  
 

Independencies Induced from a Graphical Markov Model After Marginalization and Conditioning: The R Package ggm

Giovanni M. Marchetti

Journal of Statistical Software, 2006, vol. 015, issue i06

Abstract: We describe some functions in the R package ggm to derive from a given Markov model, represented by a directed acyclic graph, different types of graphs induced after marginalizing over and conditioning on some of the variables. The package has a few basic functions that find the essential graph, the induced concentration and covariance graphs, and several types of chain graphs implied by the directed acyclic graph (DAG) after grouping and reordering the variables. These functions can be useful to explore the impact of latent variables or of selection effects on a chosen data generating model.

Date: 2006-02-08
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v015i06/v15i06.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... i06/ggm_1.0.2.tar.gz

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:015:i06

DOI: 10.18637/jss.v015.i06

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum (baum@bc.edu).

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:015:i06