Formulating State Space Models in R with Focus on Longitudinal Regression Models
Claus Dethlefsen and
Søren Lundbye-Christensen
Journal of Statistical Software, 2006, vol. 016, issue i01
Abstract:
We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms are marked in the formula. Special functions for specifying polynomial time trends, harmonic seasonal patterns, unstructured seasonal patterns and time-varying covariates can be used in the formula. The model is fitted to data using iterated extended Kalman filtering, but the formulation of models does not depend on the implemented method of inference. The package is demonstrated on three datasets.
Date: 2006-04-26
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v016i01/v16i01.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:016:i01
DOI: 10.18637/jss.v016.i01
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().