State Space Methods in Stata
David Drukker and
Richard B. Gates
Journal of Statistical Software, 2011, vol. 041, issue i10
Abstract:
We illustrate how to estimate parameters of linear state-space models using the Stata program sspace. We provide examples of how to use sspace to estimate the parameters of unobserved-component models, vector autoregressive moving-average models, and dynamic-factor models. We also show how to compute one-step, filtered, and smoothed estimates of the series and the states; dynamic forecasts and their confidence intervals; and residuals.
Date: 2011-05-12
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v041i10/v41i10.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 1i10-replication.zip
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:041:i10
DOI: 10.18637/jss.v041.i10
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().