A Distributed Procedure for Computing Stochastic Expansions with Mathematica
Christophe Ladroue and
Anastasia Papavaviliou
Journal of Statistical Software, 2013, vol. 053, issue i11
Abstract:
The solution of a (stochastic) differential equation can be locally approximated by a (stochastic) expansion. If the vector field of the differential equation is a polynomial, the corresponding expansion is a linear combination of iterated integrals of the drivers and can be calculated using Picard Iterations. However, such expansions grow exponentially fast in their number of terms, due to their specific algebra, rendering their practical use limited. We present a Mathematica procedure that addresses this issue by reparametrizing the polynomials and distributing the load in as small as possible parts that can be processed and manipulated independently, thus alleviating large memory requirements and being perfectly suited for parallelized computation. We also present an iterative implementation of the shuffle product (as opposed to a recursive one, more usually implemented) as well as a fast way for calculating the expectation of iterated Stratonovich integrals for Brownian motion.
Date: 2013-05-29
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v053i11/v53i11.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... stributedExpansion.m
https://www.jstatsoft.org/index.php/jss/article/do ... tributedExpansion.nb
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:053:i11
DOI: 10.18637/jss.v053.i11
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().