EconPapers    
Economics at your fingertips  
 

Fitting Additive Binomial Regression Models with the R Package blm

Stephanie Kovalchik and Ravi Varadhan

Journal of Statistical Software, 2013, vol. 054, issue i01

Abstract: The R package blm provides functions for fitting a family of additive regression models to binary data. The included models are the binomial linear model, in which all covariates have additive effects, and the linear-expit (lexpit) model, which allows some covariates to have additive effects and other covariates to have logisitc effects. Additive binomial regression is a model of event probability, and the coefficients of linear terms estimate covariate-adjusted risk differences. Thus, in contrast to logistic regression, additive binomial regression puts focus on absolute risk and risk differences. In this paper, we give an overview of the methodology we have developed to fit the binomial linear and lexpit models to binary outcomes from cohort and population-based case-control studies. We illustrate the blm package’s methods for additive model estimation, diagnostics, and inference with risk association analyses of a bladder cancer nested case-control study in the NIH-AARP Diet and Health Study.

Date: 2013-09-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/vi ... he_R_Package_blm.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... lm_2013.2.4.4.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v054i01/v54i01.R

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:054:i01

DOI: 10.18637/jss.v054.i01

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:054:i01