adabag: An R Package for Classification with Boosting and Bagging
Esteban Alfaro,
Matias Gamez and
Noelia García
Journal of Statistical Software, 2013, vol. 054, issue i02
Abstract:
Boosting and bagging are two widely used ensemble methods for classification. Their common goal is to improve the accuracy of a classifier combining single classifiers which are slightly better than random guessing. Among the family of boosting algorithms, AdaBoost (adaptive boosting) is the best known, although it is suitable only for dichotomous tasks. AdaBoost.M1 and SAMME (stagewise additive modeling using a multi-class exponential loss function) are two easy and natural extensions to the general case of two or more classes. In this paper, the adabag R package is introduced. This version implements AdaBoost.M1, SAMME and bagging algorithms with classification trees as base classifiers. Once the ensembles have been trained, they can be used to predict the class of new samples. The accuracy of these classifiers can be estimated in a separated data set or through cross validation. Moreover, the evolution of the error as the ensemble grows can be analysed and the ensemble can be pruned. In addition, the margin in the class prediction and the probability of each class for the observations can be calculated. Finally, several classic examples in classification literature are shown to illustrate the use of this package.
Date: 2013-09-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/vi ... ting_and_Bagging.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 02/adabag_3.2.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v054i02/v54i02.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:054:i02
DOI: 10.18637/jss.v054.i02
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().