EconPapers    
Economics at your fingertips  
 

A Greedy Algorithm for Representative Sampling: repsample in Stata

Evangelos Kontopantelis

Journal of Statistical Software, 2013, vol. 055, issue c01

Abstract: Quantitative empirical analyses of a population of interest usually aim to estimate the causal effect of one or more independent variables on a dependent variable. However, only in rare instances is the whole population available for analysis. Researchers tend to estimate causal effects on a selected sample and generalize their conclusions to the whole population. The validity of this approach rests on the assumption that the sample is representative of the population on certain key characteristics. A study using a non-representative sample is lacking in external validity by failing to minimize population choice bias. When the sample is large and non-response bias is not an issue, a random selection process is adequate to ensure external validity. If that is not the case, however, researchers could follow a more deterministic approach to ensure representativeness on the selected characteristics, provided these are known, or can be estimated, in the parent population. Although such approaches exist for matched sampling designs, research on representative sampling and the similarity between the sample and the parent population seems to be lacking. In this article we propose a greedy algorithm for obtaining a representative sample and quantifying representativeness in Stata.

Date: 2013-11-13
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v055c01/v55c01.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 01/repsample_1.1.zip

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:055:c01

DOI: 10.18637/jss.v055.c01

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:055:c01