POBE: A Computer Program for Optimal Design of Multi-Subject Blocked fMRI Experiments
Bärbel Maus and
Gerard van Breukelen
Journal of Statistical Software, 2014, vol. 056, issue i09
Abstract:
For functional magnetic resonance imaging (fMRI) studies, researchers can use multi-subject blocked designs to identify active brain regions for a certain stimulus type of interest. Before performing such an experiment, careful planning is necessary to obtain efficient stimulus effect estimators within the available financial resources. The optimal number of subjects and the optimal scanning time for a multi-subject blocked design with fixed experimental costs can be determined using optimal design methods. In this paper, the user-friendly computer program POBE 1.2 (program for optimal design of blocked experiments, version 1.2) is presented. POBE provides a graphical user interface for fMRI researchers to easily and efficiently design their experiments. The computer program POBE calculates the optimal number of subjects and the optimal scanning time for user specified experimental factors and model parameters so that the statistical efficiency is maximised for a given study budget. POBE can also be used to determine the minimum budget for a given power. Furthermore, a maximin design can be determined as efficient design for a possible range of values for the unknown model parameters. In this paper, the computer program is described and illustrated with typical experimental factors for a blocked fMRI experiment.
Date: 2014-01-25
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v056i09/v56i09.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... /POBE_Version1.2.zip
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:056:i09
DOI: 10.18637/jss.v056.i09
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().