vSMC: Parallel Sequential Monte Carlo in C++
Yan Zhou
Journal of Statistical Software, 2015, vol. 062, issue i09
Abstract:
Sequential Monte Carlo is a family of algorithms for sampling from a sequence of distributions. Some of these algorithms, such as particle filters, are widely used in physics and signal processing research. More recent developments have established their application in more general inference problems such as Bayesian modeling. These algorithms have attracted considerable attention in recent years not only be- cause that they have desired statistical properties, but also because they admit natural and scalable parallelization. However, they are perceived to be difficult to implement. In addition, parallel programming is often unfamiliar to many researchers though conceptually appealing. A C++ template library is presented for the purpose of implementing generic sequential Monte Carlo algorithms on parallel hardware. Two examples are presented: a simple particle filter and a classic Bayesian modeling problem.
Date: 2015-01-21
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v062i09/v62i09.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v062i09/vSMC.zip
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:062:i09
DOI: 10.18637/jss.v062.i09
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().