EconPapers    
Economics at your fingertips  
 

iqLearn: Interactive Q-Learning in R

Kristin A. Linn, Eric B. Laber and Leonard A. Stefanski

Journal of Statistical Software, 2015, vol. 064, issue i01

Abstract: Chronic illness treatment strategies must adapt to the evolving health status of the patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance for clinicians and intervention scientists on how to treat patients over time in order to bring about the most favorable clinical outcome on average. Methods for estimating optimal dynamic treatment regimes, such as Q-learning, typically require modeling non- smooth, nonmonotone transformations of data. Thus, building well-fitting models can be challenging and in some cases may result in a poor estimate of the optimal treatment regime. Interactive Q-learning (IQ-learning) is an alternative to Q-learning that only requires modeling smooth, monotone transformations of the data. The R package iqLearn provides functions for implementing both the IQ-learning and Q-learning algorithms. We demonstrate how to estimate a two-stage optimal treatment policy with iqLearn using a generated data set bmiData which mimics a two-stage randomized body mass index reduction trial with binary treatments at each stage.

Date: 2015-03-20
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v064i01/v64i01.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 1/iqLearn_1.3.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v064i01/v64i01.R

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:064:i01

DOI: 10.18637/jss.v064.i01

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:064:i01