EconPapers    
Economics at your fingertips  
 

gems: An R Package for Simulating from Disease Progression Models

Nello Blaser, Luisa Salazar Vizcaya, Janne Estill, Cindy Zahnd, Bindu Kalesan, Matthias Egger, Thomas Gsponer and Olivia Keiser

Journal of Statistical Software, 2015, vol. 064, issue i10

Abstract: Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.

Date: 2015-03-20
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v064i10/v64i10.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 10/gems_1.0.0.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v064i10/v64i10.R

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:064:i10

DOI: 10.18637/jss.v064.i10

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:064:i10