A Toolbox for Nonlinear Regression in R: The Package nlstools
Florent Baty,
Christian Ritz,
Sandrine Charles,
Martin Brutsche,
Jean-Pierre Flandrois and
Marie-Laure Delignette-Muller
Journal of Statistical Software, 2015, vol. 066, issue i05
Abstract:
Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions are already dedicated to fitting such models, among which the function nls() has a prominent position. Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users are required to carefully ensure and validate the entire modeling. Parameter estimation is carried out using some variant of the least- squares criterion involving an iterative process that ideally leads to the determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of the model and its parameterization in the context of the application and data considered, an a priori idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available for checking crucial assumptions, and, finally, an under- standing of the limitations in the validity of the underlying hypotheses of the fitted model and its implication for the precision of parameter estimates. Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To this end, we introduce a unified diagnostic framework with the R package nlstools. In this paper, the various features of the package are presented and exemplified using a worked example from pulmonary medicine.
Date: 2015-08-27
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v066i05/v66i05.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... lstools_1.0-2.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v066i05/v66i05.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:066:i05
DOI: 10.18637/jss.v066.i05
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().